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LQR CONTROL OF THIN SHELL DYNAMICS: FORMULATION AND NUMERICAL
IMPLEMENTATION

R.C.H. DEL ROSARIO∗ AND R.C. SMITH†

Abstract. A PDE-based feedback control method for thin cylindrical shells with surface-mounted
piezoceramic actuators is presented. Donnell-Mushtari equations modified to incorporate both passive and
active piezoceramic patch contributions are used to model the system dynamics. The well-posedness of this
model and the associated LQR problem with an unbounded input operator are established through analytic
semigroup theory. The model is discretized using a Galerkin expansion with basis functions constructed from
Fourier polynomials tensored with cubic splines, and convergence criteria for the associated approximate
LQR problem are established. The effectiveness of the method for attenuating the coupled longitudinal,
circumferential and transverse shell displacements is illustrated through a set of numerical examples.

Key words. LQR method, PDE thin shell model, Galerkin approximation, piezoceramic actuators
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1. Introduction. Thin shell models are used to characterize structural phenomena ranging from wing
vibrations to deformations in a duct due to an adjacent flow field. In full generality, shell equations can be
used to model structures with variable curvature and irregular geometries. Furthermore, the models can be
modified to incorporate a large variety of actuators and sensors and can be coupled with adjacent acoustic or
fluid fields to model coupled systems. In all cases, the displacements of various shell components are coupled
due to the curvature and geometry.

We focus here on cylindrical shell models due to their prevalence in applications (e.g., noise control
in a fuselage or flow control in a flexible pipe). For specificity, we consider surface-mounted piezoceramic
actuators due to their capability for both sensing and actuating. Their applicability is enhanced by the fact
that their response is relatively linear at low to moderate drive levels. Furthermore, they are lightweight,
space efficient, and can be manufactured for various geometries at reasonable cost. We note that while
the control methods discussed here are specific to surface-mounted piezoceramic actuators, the techniques
can be directly extended to embedded piezoceramic actuators as well as electrostrictive or magnetostrictive
actuators which have been restricted to output levels which are approximately linear.

While experimental work has demonstrated the potential of piezoceramic actuators in cylindrical shell
applications [13, 25], their full potential is typically not realized due to limitations in hardware, models,
approximation methods and control laws. One source of difficulty when approximating shell dynamics and
designing model-based controllers is due to the mechanisms which provide the models with much of their
flexibility, namely the coupling between shell components. The physical coupling due to geometry and
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curvature leads to a significant interlacing of frequencies (e.g., as illustrated in [12], it is common in certain
regimes to have ten or more linearly independent modes within a 10 Hz range). This places stringent
requirements on the accuracy of approximation methods and the ability of the controller to avoid spillover
of energy into unmodeled mechanisms.

One means of approximation in structural applications is through modal or eigenfunction expansions.
Because analytic expressions for eigenfunctions can be determined only for very restrictive boundary condi-
tions (e.g., simply supported) for shells with constant material parameters and hence no actuators, sensors or
coupling components (normal modes do not exist for shells with piecewise constant parameters [6]), approxi-
mation techniques or assumed modal expansions must be employed. The coupling and consequent interlacing
of frequencies places stringent requirements on the accuracy of approximation methods or choice of assumed
modal basis. The effects of coupling must also be considered when designing a feedback control method
which employs piezoceramic patches. For example, the tight coupling and subsequent frequency interlacing
can cause a modal controller constructed solely for resolution of uncontrolled dynamics to experience severe
spillover into uncontrolled modes upon application of the control input. This motivates the development of
a more general model-based control method for shell applications.

In this paper, we consider an LQR full state feedback law for cylindrical shells modeled by Donnell-
Mushtari equations modified to account for actuator dynamics. An approximate feedback law appropriate
for numerical implementation is developed in the context of a Fourier/spline-based Galerkin method. The
Donnell-Mushtari equations characterize the coupling and physics in a large number of thin shell applications.
Furthermore, the analysis and approximation methods developed in this context can be directly extended
to more accurate models (e.g., Byrne-Flügge-Lur’ye model) if the application warrants. The consideration
of LQR performance illustrates properties of the system and model-based control techniques and facilitates
investigations regarding issues such as patch number and configuration. While full state measurements
are not available using current instrumentation, and hence the techniques cannot directly be implemented
in experiments, they provide an important first step in the design of effective compensators based on state
estimates calculated using a limited number of observations (see [10]). The consideration of the LQR problem
also provides a step toward the development of model-based controllers for fully coupled structural acoustic
and fluid/structure systems involving cylindrical shells. As detailed in [12], the Galerkin approximation
method employed here is flexible with respect to boundary conditions and facilitates consideration of the
distributional derivatives which arise through the inclusion of patch contributions in the model. It also
provides the accuracy required to resolve dynamics in the fully coupled model. From a control perspective,
the use of the general spline basis eliminates the tendency toward spillover into unmodeled components of
the system. Furthermore, the approximation method satisfies the adjoint convergence and maintenance of
uniform decay bounds required for convergence of control gains. This enhances the robustness of the method
in a variety of applications.

We note that additional theory concerning stabilization and feedback control of thin shells from a
PDE perspective can be found in [17, 18, 22]. Furthermore, an alternative framework for establishing
the convergence of control gains for the abstract operator formulation is given in [16, 19]. Both sets of
references are theoretical in nature, however, and do not provide numerical methods or simulation results.
The difference and primary contribution of this paper lies in the comprehensive treatment of the problem
in a framework which includes model development and well-posedness analysis, a rigorous LQR control
formulation, incorporation of an efficient numerical method, and numerical examples demonstrating the
scope of the method.
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Strong and weak forms of the the thin shell model are summarized in Section 2. These models are
obtained through modification of the classical Donnell-Mushtari equations to incorporate passive (material)
and active (actuator) contributions due to the patches. The model is also posed in an abstract form based
upon sesquilinear forms to provide a framework amenable to establishment of model well-posedness and de-
velopment of an LQR method. Infinite dimensional LQR methods for systems with no exogenous disturbance
or systems with a periodic disturbance are discussed in Section 3. In both cases, unbounded control inputs
result due to the piecewise support of the patches. For the case with no exogenous disturbance, criteria
guaranteeing the convergence of approximate suboptimal gains to optimal gains for the infinite dimensional
system are established through application of analytic semigroup theory. The Fourier/spline-based Galerkin
method of [12] is outlined in Section 4, and numerical examples demonstrating the control method are
presented in Section 5. These example demonstrates that through the use of the model-based methodol-
ogy with general Galerkin approximations, significant attenuation in shell vibrations can be obtained using
piezoceramic actuators.

2. PDE Model. Throughout this discussion, we consider a cylindrical shell whose radius is large
in comparison with the thickness (see [15, 21] for details regarding limits on ratios). In accordance with
common experimental clamping techniques, the edges are taken to be fixed in the sense that longitudinal,
circumferential and transverse displacements along with transverse slopes are held fixed. Control is pro-
vided by surface-mounted piezoceramic patches which are configured in pairs with edges aligned with the
circumferential and longitudinal axes of the shell.

To specify the geometry for the model, the longitudinal axis of the shell is taken to be aligned with
the x-axis as depicted in Figure 1. The length, thickness and radius of the shell are respectively denoted
by `, h and R while the region occupied by the middle surface is denoted by Γ0. The shell is assumed to
have mass density ρs, Young’s modulus E, Poisson ratio ν, Kelvin-Voigt damping coefficient cD and air
damping coefficient µ. Note that the assumption of Kelvin-Voigt damping is reasonable and typical for
many shell materials such as aluminum. Finally, the external surface forces are denoted by q̂x, q̂θ, q̂n while
the displacements of the middle surface in the longitudinal, circumferential and transverse directions are
denoted by u, v and w, respectively.

thi    patch
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h
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v
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u

i θ(x  ,    )i

Figure 1. Thin cylindrical shell with surface mounted piezoceramic patches.
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It is assumed that s pairs of piezoceramic patches having thickness hpe, density ρpe, Young’s modulus
Epe, Poisson ratio νpe and Kelvin-Voigt damping coefficient cDpe are mounted to the inner and outer surfaces
of the shell. Furthermore, it is assumed that the glue bonding layer provides negligible contribution to the
structural dynamics (the reader is referred to [8, 10] for details concerning the incorporation of differing
patch characteristics and bonding layers in the ensuing models).

2.1. Strong Form of the Modeling Equation. The dynamics of the previously described thin
cylindrical shell with surface-mounted piezoceramic actuators are modeled by the modified Donnell-Mushtari
equations

Rρh
∂2u

∂t2
−R

∂Nx

∂x
− ∂Nθx

∂θ
= Rq̂x −R

s∑
i=1

∂(Nx)pei

∂x
Spei (x, θ)

Rρh
∂2v

∂t2
− ∂Nθ

∂θ
−R

Nxθ

∂x
= Rq̂θ −

s∑
i=1

∂(Nθ)pei

∂θ
Spei(x, θ)

Rρh
∂2w

∂t2
+Rµ

∂w

∂t
−R

∂2Mx

∂x2
− 1
R

∂2Mθ

∂θ2
− 2

∂2Mxθ

∂x∂θ
+Nθ

= Rq̂n −
s∑

i=1

[
R
∂2(Mx)pei

∂x2
+

1
R

∂2(Mθ)pei

∂θ2

]
.

(2.1)

As detailed in [8, 10, 21], equations of this type are obtained through force and moment balancing with
only low order terms retained. Here Mx,Mθ,Mθx and Mxθ are internal moments, Nx, Nθ, Nθx and Nxθ

denote internal force resultants, and (Mx)pei , (Mθ)pei , (Nx)pei , (Nθ)pei designate the external resultants (line
moments and forces) generated by the ith patch pair. The indicator function

Spei(x, θ) ≡ S1,2(x)Ŝ1,2(θ),

where

S1,2(x) =


1 , x < (x1i + x2i)/2

0 , x = (x1i + x2i)/2

−1 , x > (x1i + x2i)/2

, Ŝ1,2(θ) =


1 , θ < (θ1i + θ2i)/2

0 , θ = (θ1i + θ2i)/2

−1 , θ > (θ1i + θ2i)/2

,

delineates the sense of the forces generated by the ith pair. The symmetry of the function arises from the
property that for homogeneous patches having uniform thickness, equal but opposite strains are generated
about the point (x̄i, θ̄i) = ((x1i + x2i)/2, (θ1i + θ2i)/2).

The composite density ρ consists of the shell density ρs in regions devoid of patches and a linear combi-
nation of ρs and the patch density ρpe in regions covered by patchs (see [10] for details). Hence ρ is piecewise
constant with discontinuities at the patch edges.

Expressions for the internal force and moment resultants are derived under the assumption that stress
is proportional to a linear combination of strain and strain rate. This yields a model which incorporates
Kelvin-Voigt or strong internal damping. As detailed in [8, 10], the resultants Nx, Nxθ, Nθx,Mx,Mxθ,Mθx
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derived under this assumption are

Nx =
Eh

1− ν2
(εx + νεθ) +

s∑
i=1

2Epehpe

1− ν2
pe

(εx + νpeεθ)χpei(x, θ)

+
cDh

1− ν2
(ε̇x + νε̇θ) +

s∑
i=1

2cDpehpe

1− ν2
pe

(ε̇x + νpeε̇θ)χpei(x, θ)

Nxθ = Nθx =
Eh

2(1 + ν)
εxθ +

s∑
i=1

Epehpe

(1 + νpe)
εxθχpei(x, θ)

+
cDh

2(1 + ν)
ε̇xθ +

s∑
i=1

cDpehpe

(1 + νpe)
ε̇xθχpei(x, θ)

(2.2)

and

Mx =
Eh3

12(1− ν2)
(κx + νκθ) +

s∑
i=1

2Epea3

3(1− ν2
pe)

(κx + νpeκθ)χpei(x, θ)

+
cDh

3

12(1− ν2)
(κ̇x + νκ̇θ) +

s∑
i=1

2cDpea3

3(1− ν2
pe)

(κ̇x + νpeκ̇θ)χpei(x, θ)

Mxθ = Mθx =
Eh3

24(1 + ν)
τ +

s∑
i=1

Epea3

3(1 + νpe)
τχpei (x, θ)

+
cDh

3

24(1 + ν)
τ̇ +

s∑
i=1

cDpea3

3(1 + νpe)
τ̇χpei(x, θ) .

(2.3)

The constant a3 ≡ (h/2+ hpe)3− h3/8 results from integration through the thickness of the patch while the
characteristic function

χpei(x, θ) =

{
1 , x1i ≤ x ≤ x2i , θ1i ≤ θ ≤ θ2i

0 , otherwise

delineates the region covered by the ith patch pair with edges at x1i, x2i, θ1i, θ2i. Expressions for the
resultants Nθ and Mθ can be obtained by replacing εx, εθ, κx, κθ in the expressions for Nx and Mx by
εθ, εx, κθ, κx, respectively. As detailed in [8, 10, 21], the midsurface strains and changes in curvature for the
Donnell-Mushtari model are

εx =
∂u

∂x
, εθ =

1
R

∂v

∂θ
+
w

R
, εxθ =

∂v

∂x
+

1
R

∂u

∂θ

κx = −∂
2w

∂x2
, κθ = − 1

R2

∂2w

∂θ2
, τ = − 2

R

∂2w

∂x∂θ
.

(2.4)

Note that for the undamped shell which is devoid of patches, substitution of the strain and curvature
expressions (2.4) into the resultant equations (2.2) and (2.3) yields the classical Donnell-Mushtari expressions
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Nx =
Eh

(1 − ν2)

[
∂u

∂x
+
ν

R

(
∂v

∂θ
+ w

)]
, Mx =

−Eh3

12(1− ν2)

[
∂2w

∂x2
+

ν

R2

∂2w

∂θ2

]

Nθ =
Eh

(1− ν2)

[
1
R

∂v

∂θ
+
w

R
+ ν

∂u

∂x

]
, Mθ =

−Eh3

12(1− ν2)

[
1
R2

∂2w

∂θ2
+ ν

∂2w

∂x2

]

Nxθ = Nθx =
Eh

2(1 + ν)

[
∂v

∂x
+

1
R

∂u

∂θ

]
, Mxθ = Mθx =

−Eh3

12R(1 + ν)
∂2w

∂x∂θ

(e.g., see [21]).
The necessity of including the passive (material) patch contributions in the density and moment and

force resultants for the combined structure is discussed in [10]. While the passive patch contributions may be
negligible in some cases, it is well documented that for many currently employed control configurations, the
structural dynamics are sufficiently altered by the presence of the patches so as to yield inadequate model
fits if the patches are neglected. Experimental results demonstrating this effect for circular plates can be
found in [7, 10] while independent experimental confirmation for rectangular plates is given in [14]. Further
analysis for thin shells is provided in [27]. The numerical examples in Section 5 of this paper illustrate that
the control method is equally applicable when passive patch contributions are neglected or included and
hence is effective when their passive contribution is significant.

To characterize the external or active patch contributions, it is typical to start with the assumption that
the strains generated by a patch are proportional to the applied voltage [8]. Since differing voltages can be
applied to the outer and inner patches in the pair, we will differentiate between the two with Vi1(t) and Vi2(t)
used to denote the voltages to the outer and inner patches in the ith pair, respectively. The proportionality
constant relating the generated strain to the input voltage is designated by d31. As detailed in [8], the total
external moments and forces generated by the patches are

(Mx)pei
=

−Epe

1− νpe
· d31

hpe
χpei

[(a2

2
+
a3

3R

)
Vi1 −

(a2

2
− a3

3R

)
Vi2

]

(Mθ)pei
=

−Epe

1− νpe
· d31a2

2hpe
χpei [Vi1 − Vi2]

(Nx)pei
=

−Epe

1− νpe
· d31

hpe
χpeiSpei

[(
hpe +

a2

2R

)
Vi1 +

(
hpe −

a2

2R

)
Vi2

]

(Nθ)pei
=

−Epe

1− νpe
d31χpeiSpei [Vi1 + Vi2]

(2.5)

where a2 = (h/2 + hpe)2 − h2/4 and a3 = (h/2 + hpe)3 − h3/8. When substituted into (2.1), the expressions
(2.5) provide the input from the patches when voltages are applied. We point out that the characteristic
functions χpei restrict the external patch resultants to the region covered by the ith patch pair.

The fixed-edge boundary conditions

u = v = w =
dw

∂x
= 0 , x = 0, `(2.6)

are used to model the end behavior of the shell. These boundary conditions are appropriate for experimental
setups in which heavy endcaps prevent edge movement. Note that alternative boundary conditions such as
simply supported or “almost fixed” (see [9]) can be employed if edge movement is suspected.
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We consider two sets of initial conditions. For general systems, the initial conditions are specified as

u(0, x) = u0(x) , v(0, x) = v0(x) , w(0, x) = w0(x) .

To model the long-term dynamics of systems driven by a periodic exogenous force g with period τ , we also
consider the periodic conditions

u(0, x) = u(τ, x) , v(0, x) = v(τ, x) , w(0, x) = w(τ, x) .

2.2. Weak Form of Modeling Equations. The internal and external moment and force resultants
(2.2), (2.3) and (2.5) are discontinuous due to the presence of the piezoceramic patches. When incorporated
in the strong form of the shell model (2.1), this leads to problems associated with the differentiation of
Dirac distributions. To alleviate these difficulties and reduce smoothness requirements on solutions, it is
advantageous to consider a weak form of the modeling equations which can be derived from Hamilton’s
principle (energy considerations).

The state variables for the problem in second-order form are taken to be y = (u, v, w) in the state space
H = L2(Γ0)× L2(Γ0)× L2(Γ0). For the fixed-edge boundary conditions (2.6), the space of test functions is
taken to be V = H1

0 (Γ0)×H1
0 (Γ0)×H2

0 (Γ0) where

H1
0 (Γ0) = {η ∈ H1(Γ0) | η(0, θ) = η(`, θ) = 0}

H2
0 (Γ0) = {η ∈ H2(Γ0) | η(0, θ) = ηx(0, θ) = η(`, θ) = ηx(`, θ) = 0} .

For Φ = (u, v, w) and Ψ = (η1, η2, η3), the H and V inner products are taken to be

〈Φ, Ψ〉H =

∫
Γ0

ρhuη1dγ +

∫
Γ0

ρhvη2dγ +

∫
Γ0

ρhwη3dγ

and

〈(E, Epe)Φ, Ψ〉V =

∫
Γ0

{
Eh

1− ν2

[
(εx + νεθ)

∂η1

∂x
+

1

2R
(1− ν)εxθ

∂η1

∂θ

]

+

s∑
i=1

2Epehpe

1− ν2
pe

χpei(x, θ)

[
(εx + νpeεθ)

∂η1

∂x
+

1

2R
(1− νpe)εxθ

∂η1

∂θ

]}
dγ

+

∫
Γ0

{
Eh

1− ν2

[
(εθ + νεx)

∂η1

∂θ
+

1

2R
(1− ν)εxθ

∂η2

∂x

]

+

s∑
i=1

2Epehpe

1− ν2
pe

χpei(x, θ)

[
(εθ + νpeεx)

∂η2

∂θ
+

1

2R
(1− νpe)εxθ

∂η2

∂x

]}
dγ

+

∫
Γ0

{
Eh

1− ν2

[
1

R
(εθ + νεx)η3 − h2

12
(κx + νκθ)

∂2η3

∂x2

− h2

12R2
(κθ + νκx)

∂2η3

∂θ2
− h2

12R
(1− ν)τ

∂2η3

∂x∂θ

]
+

s∑
i=1

2Epe

3(1− ν2
pe)

χpei(x, θ)

[
3hpe

R
(εθ + νpeεx)η3 − a3(κx + νpeκθ)

∂2η3

∂x2

− a3

R2
(κθ + νpeκx)

∂2η3

∂θ2
− a3

R
(1− νpe)τ

∂2η3

∂x∂θ

]}
dγ
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where εx, εθ, εxθ, κx, κθ, τ are defined in (2.4) and dγ = Rdθdx. The dependence of the inner product on the
Young’s moduli is explicitly included in the definition to provide a notation for defining analogous damping
expressions later in this work.

The weak form of (2.1), as derived in [10] from energy principles, is given by∫
Γ0

{
Rρh

∂2u

∂t2
η1 +RNx

∂η1
∂x

+Nθx
∂η1
∂θ

−Rq̂xη1 −R
s∑

i=1

(Nx)pei

∂η1
∂x

}
dγ = 0

∫
Γ0

{
Rρh

∂2v

∂t2
η2 +Nθ

∂η2
∂θ

+RNxθ
∂η2
∂x

−Rq̂θη2 −
s∑

i=1

(Nθ)pei

∂η2
∂θ

}
dγ = 0

∫
Γ0

{
Rρh

∂2w

∂t2
η3 +Rµ

∂w

∂t
η3 +Nθη3 −RMx

∂2η3
∂x2

− 1
R
Mθ

∂2η3
∂θ2

− 2Mxθ
∂2η3
∂x∂θ

−Rq̂nη3 +
s∑

i=1

[
R(Mx)pei

∂2η3
∂x2

+
1
R

(Mθ)pei

∂2η3
∂θ2

]}
dγ = 0

(2.7)

for all Ψ = (η1, η2, η3) ∈ V . A comparison between (2.7) and (2.1) illustrates that in the weak form, deriva-
tives are transferred from the discontinuous resultants onto suitably smooth test functions. The problem in
this form is then amenable to analysis and approximation.

2.3. Abstract Formulation. To provide a natural framework in which to establish model well-
posedness and infinite dimensional LQR control methods, we consider an abstract formulation of the model
based upon stiffness and damping sesquilinear forms. To this end, we define σi : V × V → Cl , i = 1, 2 by

σ1(Φ,Ψ) = 〈(E,Epe)Φ,Ψ〉V

σ2(Φ,Ψ) =
〈
(cD, cDpe)Φ,Ψ

〉
V

+
∫

Γ0

µwη3dγ .
(2.8)

Note that 〈(cD, cDpe)Φ,Ψ〉V differs from 〈(E,Epe)Φ,Ψ〉V only in that Young’s moduli are replaced by Kelvin-
Voigt damping coefficients. It can be directly verified that the stiffness form σ1 satisfies

(H1) |σ1(Φ,Ψ)| ≤ c1|Φ|V |Ψ|V , for some c1 ∈ lR (Bounded)

(H2) Reσ1(Φ,Φ) ≥ c2|Φ|2V , for some c2 > 0 (V -Elliptic)

(H3) σ1(Φ,Ψ) = σ1(Ψ,Φ) (Symmetric)

for all Φ,Ψ ∈ V . Moreover, the damping term σ2 satisfies

(H4) |σ2(Φ,Ψ)| ≤ c3|Φ|V |Ψ|V , for some c3 ∈ lR (Bounded)

(H5) Reσ2(Φ,Φ) ≥ c4|Φ|2V , for some c4 > 0 (V -Elliptic) .

Remark 1. The symmetry of σ1 is dependent upon the choice of shell model and ultimately reflects the
Maxwell-Betti reciprocity theorem. While the Donnell-Mushtari model yields a symmetric sesquilinear form
σ1, other models such as the Timoshenko shell model will not yield a symmetric form.
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The control input space is taken to be the Hilbert space U = lR2s and for Ψ ∈ V , the input operator
B ∈ L(U, V ∗) is defined by

〈Bu(t),Ψ〉V ∗,V =
∫

Γ0

s∑
i=1

{
(Nx)pei

∂η1
∂x

+
1
R

(Nθ)pei

∂η2
∂θ

−(Mx)pei

∂2η3
∂x2

− 1
R2

(Mθ)pei

∂2η3
∂θ2

}
dγ

where 〈·, ·〉V ∗,V denotes the usual duality product. With the definition g̃ = (1/ρh)[q̂x, q̂θ, q̂n], we can write
the weak form (2.7) in the abstract variational form

〈ÿ(t),Ψ〉V ∗,V + σ2(ẏ(t),Ψ) + σ1(y(t),Ψ) = 〈Bu(t) + g̃(t),Ψ〉V ∗,V .(2.9)

To pose the problem in a first-order form amenable for control applications, we define the product spaces
H = V ×H and V = V × V with the norms

|(φ1, φ2)|2H = |φ1|2V + |φ2|2H

|(φ1, φ2)|2V = |φ1|2V + |φ2|2V .

The state is taken to be z(t) = (y(t), ẏ(t)) ∈ H while the product space forcing terms are formulated as

g(t) =

[
0
g̃(t)

]
, Bu(t) =

[
0

Bu(t)

]
.(2.10)

The second-order system (2.9) can then be formulated in the first-order form

〈ż(t),Λ〉V∗,V + σ(z(t),Λ) = 〈Bu(t) + g(t),Λ〉V∗,V for Λ ∈ V

z(0) = z0 = (y0, y1)
(2.11)

where σ : V × V → Cl is given by

σ(φ, ψ) = −〈φ2, ψ1〉V + σ1(φ1, ψ2) + σ2(φ2, ψ2)

for φ = (φ1, φ2), ψ = (ψ1, ψ2) ∈ V . As proven in [10, page 109], σ is V continuous and for λ > 0, σ(·, ·) +
λ 〈·, ·〉H is V-elliptic. From the continuity of σ, it follows that one can define an operator Ã ∈ L(V ,V∗) by
σ(Υ,Λ) = 〈ÃΥ,Λ〉V∗,V .

To obtain a strong form of the first-order system (2.11), consider the system operator

domA = {(φ1, φ2) ∈ H|φ2 ∈ V,A1φ1 +A2φ2 ∈ H}

A =

[
0 I

−A1 −A2

]
(2.12)

with A1, A2 ∈ L(V, V ∗) defined by

〈Aiφ1, φ2〉V ∗,V = σi(φ1, φ2) , i = 1, 2 .

It should be notated that A is the negative of the restriction to domA of Ã ∈ L(V ,V∗) so that σ(Υ,Λ) =
〈−AΥ,Λ〉H for Υ ∈ domA,Λ ∈ V . A strong form of the abstract system model is then given by

ż(t) = Az(t) + Bu(t) + g(t) in V∗ = V × V ∗

z(0) = z0 .
(2.13)

The rigorous equivalence of solutions is established through the following theorems.
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Theorem 1. Under Hypotheses (H1)-(H5) on σ1 and σ2, Ã generates an analytic semigroup T (t) on V ,H
and V∗. In terms of this semigroup, the representation

z(t) = T (t)z0 +
∫ t

0

T (t− s)[Bu(s) + g(s)]ds(2.14)

defines a mild solution to (2.13) for z0 ∈ V∗ and Bu + g ∈ L2((0, T );V∗). Furthermore, this semigroup is
(uniformly) exponentially stable on V ,H and V∗.

Theorem 2. Let zsg denote the semigroup solution to (2.13) given by (2.14) and let zvar denote the weak
solution to (2.9). Under hypotheses (H1)-(H5), it follows that zsg(z0,F) = zvar(z0,F) for z0 ∈ H and
F ≡ Bu+ g ∈ L2((0, T );V∗).

Following the convention of [28], we will use the same notation for the semigroups defined on V ,H and V∗

since each semigroup is an extension or restriction of the others. Note that domA defined in (2.12) is actually
domHÃ, the domain of Ã as a generator of T (t) in H. As detailed in Lemma 3.6.1 and Theorem 3.6.1 of [28]
(see also Section IV.6 of [24] and Chapter 2, Theorem 5.2 of [23]), the property that Ã generates an analytic
semigroup on V ,H and V∗ results from the continuity and V-ellipticity of σ. The exponential stability of T (t)
on H for second-order systems with strong damping is demonstrated in [4] while the exponential stability
of T (t) on V and V∗ in this setting is proven in Lemma 3.3 of [5]. Finally, Theorem 2 is a reformulation of
Theorem 4.14 of [10] and details can be found therein.

Remark 2. The previous analysis applies to general V∗-valued forces with states having initial values
z0 ∈ V∗. In many applications, disturbances are generated by rotating or oscillating components in which
case it is reasonable to assume that g is periodic. The long-term behavior of the system then satisfies the
abstract Cauchy equation

ż(t) = Az(t) + Bu(t) + g(t)

z(0) = z(τ) .
(2.15)

in V∗ where τ is taken to be commensurate with all frequencies present in the disturbance g.

3. Approximation Problem. For implementation purposes, we consider Galerkin approximations to
obtain trajectories which evolve in finite dimensional subspaces VN ⊂ V ⊂ H. To guarantee convergence in
the subsequent control problem, we assume that the approximation method satisfies the standard convergence
condition
(H1N) For any z ∈ V , there exists a sequence z̃N ∈ VN such that |z − z̃N |V → 0 as N →∞.

In this framework, the operatorAN : VN →VN which approximates A is defined by restricting σ to VN×VN

to yield 〈
−ANΥ,Λ

〉
H = σ(Υ,Λ) for all Υ,Λ ∈ VN .(3.1)

For each N , the C0 semigroup on VN which is generated by AN is denoted by T N (t). The control operator
is approximated by BN ∈ L(U,VN ) given by〈

BNu,Λ
〉
H = 〈u,B∗Λ〉U for all u ∈ U , Λ ∈ VN .(3.2)
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Finally, we let PN denote the usual orthogonal projection of H onto VN which by definition satisfies

(i) PNΥ ∈ VN for Υ ∈ H

(ii)
〈
PNΥ−Υ,Λ

〉
H = 0 for all Λ ∈ VN .

This projection can be extended to PN ∈ L(V∗,VN) by replacing theH-inner product 〈Υ,Λ〉H by the duality
product 〈Υ,Λ〉V∗,V and considering Υ ∈ V∗.

The approximate problem corresponding to (2.11) can then be formulated as〈
żN (t),Λ

〉
H + σ(zN (t),Λ) =

〈
BNu(t) + PNg(t),Λ

〉
H for all Λ ∈ VN

zN(0) = PNz0 .

with the solution given by

zN(t) = T N (t)PNz0 +
∫ t

0

T N (t− s)
[
BNu(s) + PNg(s)

]
ds .

In strong form, the finite dimensional system has the form

żN (t) = ANzN(t) + BNu(t) + PNg(t)

zN (0) = PNz0 .
(3.3)

This system forms the constraint equations used in Section 4.1. A similar finite dimensional system approx-
imates the dynamics of the periodic system.

The exponential stability of the semigroup T (t) was established in Theorem 1. An important issue in
the subsequent control formulation concerns the uniform stability of the semigroup under approximation
and this is established in the following theorem from [5, 10] (see specifically Lemma 7.13 of [10]). The use
of the theorem for our shell system is illustrated in Example 1 of the next section.

Theorem 3. Assume that the injection i : V ↪→ H is compact. It is also assumed that the damping
sesquilinear form can be decomposed as σ2 = δσ1 + σ̂2, for some δ > 0, where the continuous sesquilinear
form σ̂2 satisfies for some λ ∈ lR

Re σ̂2(φ, φ) ≥ − δ
2
|φ|2V − λ|φ|2H for all φ ∈ V .

Finally, suppose that the operator A−1
1 Â2, where Â2 ∈ L(V, V ∗) is defined by

〈
Â2φ, η

〉
V ∗,V

= σ̂2(φ, η), is

compact on V .
If for some ω ∈ lR and M ≥ 1, T (t) satisfies

|T (t)|L(H) ≤Meωt , t ≥ 0 ,

then for any ε > 0 there exists an integer Nε such that for N ≥ Nε,

|T N (t)PN |L(H) ≤ M̃e(ω+ε)t , t ≥ 0

for some constant M̃ > 0 independent of N .

To obtain matrix representations for the finite-dimensional operators AN ,BN and gN , it is necessary
to specify a basis for the approximating subspace VN . To exploit the tensor nature of the shell domain
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Γ0 and circumferential periodicity, we employ the basis described in [12] which is constructed with Fourier
components in θ and cubic splines in x. Specifically, the component bases for the u, v and w displacements
are assumed to have the form Buk

(θ, x) = eimθBuj (x),Bvk
(θ, x) = eimθBvj (x), and Bwk

(θ, x) = eimθBwj (x)
where Buj , Bvj and Bwj are cubic B splines modified to satisfy the boundary conditions. The approximating
subspace then has the form VN = span{Buk

}× span{Bvk
}× span{Bwk

} and displacements are approximated
through the expansions

uN (t, θ, x) =
Nu∑
k=1

uk(t)Buk
(θ, x)

vN (t, θ, x) =
Nv∑
k=1

vk(t)Bvk
(θ, x)

wN (t, θ, x) =
Nw∑
k=1

wk(t)Bwk
(θ, x) .

(3.4)

The restriction of σ to VN and construction of the forcing vectors then yields the matrix system KN
E 0

0 MN

 ϑ̇N (t)

ϑ̈N (t)

 =

 0 KN
E

−KN
E −KN

cD

 ϑN (t)

ϑ̇N (t)

 +

 0

B̃N

 [u(t)] +

 0

g̃N (t)


 KN

E 0

0 MN

 ϑN (0)

ϑ̇N (0)

 =

 zN1

zN2


where ϑN (t) = [u1(t), · · · , uNu(t), v1(t), · · · , vNv (t), w1(t), · · · , wNw (t)]T contains the N = Nu + Nv + Nw

generalized Fourier coefficients. The s patch inputs are contained in the vector u(t) = [u1(t), · · · , us(t)]T .
The reader is referred to [12] for details concerning the construction of the mass, stiffness and damping
matrices MN ,KN

E ,K
N
cD

, the inputs B̃N , g̃N (t) and the initial conditions zN1 , z
N
2 .

Multiplication by the inverted mass matrix yields the Cauchy equation

żN(t) = ANzN(t) +BNu(t) + gN (t)

zN(0) = zN
0 ,

(3.5)

where zN(t) = [ϑN (t), ϑ̇N (t)]T ∈ lRN with N = 2N . Note that AN and BN are the matrix representations
for the operators AN and BN in terms of the Fourier/spline basis while gN (t) is the projection of g(t).
We point out that the notation zN (t) designates both the time-dependent generalized Fourier coefficients
in lRN and approximate solutions in VN . The specific usage is indicated by the context and the use of
finite dimensional operators or the corresponding matrix representations. Similarly, the control input u(t)
should not be confused with the longitudinal displacement u(t, x, θ). Equation (3.5) with gN(t) ≡ 0 forms
the constraint for Example 2 in Section 5.

4. LQR Control Problem. As noted in (2.13) and (2.15) of the last section, the thin shell model can
be posed in the abstract forms

ż(t) = Az(t) + Bu(t) + g(t)

z(0) = z0
(4.1)
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or

ż(t) = Az(t) + Bu(t) + g(t)

z(0) = z(τ) ,
(4.2)

in V∗, depending upon the periodicity assumptions on the disturbance and state. In this section, infinite
dimensional and approximating finite dimensional LQR control methods are developed for the system (4.1)
with g ≡ 0 and system (4.2) with periodic disturbance g and periodic end conditions.

4.1. No Exogenous Input. The infinite horizon optimal control problem for systems with no exoge-
nous input g can be posed as follows: determine the control u which minimizes the quadratic cost functional

J(u, z0) =
∫ ∞

0

{
|Qz(t)|2H + |R1/2u(t)|2U

}
dt(4.3)

subject to

ż(t) = Az(t) + Bu(t)

z(0) = z0 .

The nonnegative, self-adjoint operator Q ≡ D∗D ∈ L(H) can be specified to weight state components while
the positive, self-adjoint operator R = (R1/2)2 ∈ L(U) serves to weight the control. In this case, R acts as
a soft constraint to prevent excessive voltages to the patches.

To guarantee the existence of a unique Riccati solution and an exponentially stable closed loop semigroup,
it is sufficient to require that (A,B) is stabilizable and (A,D) is detectable. Under these conditions, it is
established in [5, 10] that the optimal control minimizing (4.3) is given by

ū(t) = −R−1B∗Πz̄(t)(4.4)

where Π solves the algebraic Riccati equation

(A∗Π + ΠA−ΠBR−1B∗Π +Q)z = 0 for all z ∈ V

and z̄(t) = S(t)z0. Here S(t) is the closed loop semigroup generated by A− BR−1B∗Π.
The corresponding finite dimensional problem concerns the determination of suboptimal controls u which

minimize the functional

JN (u, z0) =
∫ ∞

0

{
|QNzN (t)|2H + |R1/2u(t)|2U

}
dt

subject to

żN (t) = ANzN(t) + BNu(t)

zN (0) = PNz0

(see (3.3) with g ≡ 0). The following theorem specifies conditions which guarantee the existence and
convergence of these suboptimal controls to the control (4.4) for the original infinite dimensional system.
This is Theorem 7.10 of [10]) and details can be found therein. The application of this theorem to the shells
system is illustrated in Example 1 which follows.

Theorem 4. Assume that the injection i : V ↪→ H is compact. Let the sesquilinear form σ associated
with the first-order system (2.11) be continuous and V-elliptic. Assume that the operators A,B,D satisfy:
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(A,B) is stabilizable and (A,D) is detectable where B ∈ L(U,V∗) is unbounded. Consider an approximation
method which satisfies (H1N). Finally, suppose that for fixedN0 and N > N0, the pair (AN ,BN) is uniformly
stabilizable and (AN ,DN ) is uniformly detectable.

Then for N sufficiently large, there exists a unique nonnegative self-adjoint solution ΠN ∈ L(V∗,V) to
the N th approximate algebraic Riccati equation

AN∗
ΠN + ΠNAN −ΠNBNR−1BN∗

ΠN +QN = 0

in VN . There also exist constants M3 ≥ 1 and ω3 > 0 independent of N such that the closed loop semigroup
SN (t) = e(A

N−BNR−1BN∗ΠN )t satisfies∣∣SN (t)
∣∣
VN ≤M3e

−ω3t , t > 0 .

Moreover, the convergence of the Riccati and control operators

ΠNPNz
s→ Πz in V for every z ∈ V∗∣∣∣BN∗

ΠNPN − B∗Π
∣∣∣
L(H,U)

→0 ,

as N→∞, is obtained.

Example 1.

We consider in this example a shell with constant parameters ρ,E, ν, cD. Such a case would arise if
modeling a homogeneous shell or a shell in which the variance of material properties across regions with
actuators is negligible. The sesquilinear forms for this model are specified in (2.8). Due to the constant
coefficients, σ2 can be written as σ2 = δσ1 + σ̂2 where δ = cD

E and σ̂2(Φ,Ψ) = µ
∫
Γ0
wη3dγ. It follows

immediately that

Reσ̂2(φ, φ) = µ

∫
Γ0

φ2dγ ≥ − δ
2
|φ|2V

for all φ ∈ V . The boundedness of the operator Â2 generated by σ̂2 follows directly from the boundedness of
σ̂2. Furthermore, it is noted that A−1

1 ∈ L(V ∗, V ) can be written as an operator on V → V by A−1
1 = A−1

1 i∗i
where the injections i : V ↪→ H, i∗ : H ↪→ V ∗ are compact. Thus A−1

1 is compact on V which implies that
A−1

1 Â2 is compact on V since it is formed from the product of compact and bounded linear operators.
Finally, the exponential stability of T (t), the stabilizability of (A,B) and the detectability of (A,D) are
guaranteed by Theorem 1. The hypotheses of Theorem 3 are then satisfied for this system and one obtains
uniform bounds on the approximating semigroups. The convergence of the Riccati and control operators is
then obtained from Theorem 4.

Remark 3. We note that an alternative means of establishing the well-posedness of the closed loop control
problem and convergence criteria for suboptimal control gains is through the utilization of uniform analyticity
conditions for the semigroup T (t) generated by A as discussed in [16, 19]. For some systems with unbounded
input operators, such conditions are more readily verified than the requirements of uniform stabilizability
and detectability.
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4.2. Periodic Exogenous Input. The second case under consideration is that in which the exogenous
force g models periodic disturbances such as noise generated by rotating engine components (e.g., propellers
or turbines) or periodic electromagnetic sources. Under the assumption that g is periodic in time, the
functional to be minimized is

Jτ (u) =
1
2

∫ τ

0

{|Qz(t)|2H + |R1/2u(t)|2U} dt .

subject to (4.2). The endpoint τ is chosen to be commensurate with all frequencies present in g. The
theory for this case is less complete than that for systems with no exogenous input and is currently limited
to bounded control inputs B. Under the assumption that (A,B) is stabilizable, (A,D) is detectable and
g ∈ L2(0, τ ;H), it is verified in [11] that the Riccati equation

A∗Π + ΠA+ ΠBR−1B∗Π +Q = 0

has a unique solution. Furthermore, if r denotes the τ -periodic solution of the adjoint or tracking equation

ṙ(t) = −[A− BR−1B∗Π]∗r(t) + Πg(t)

r(0) = r(τ)

and z̄ is the closed loop solution of

˙̄z(t) = [A− BR−1B∗Π]z̄(t)− BR−1B∗r(t) + g(t)

z̄(0) = z̄(τ) ,

then the optimal control is given by

ū(t) = −R−1B∗[Πz̄(t)− r(t)] .(4.5)

For implementation purposes, the suboptimal control is computed through approximation techniques anal-
ogous to those described in the previous section for the system with no exogenous input. The theoretical
extension of the periodic theory for unbounded input operators B is currently under investigation. The
practical efficacy of the method in this regime is demonstrated through numerical examples in the next
section.

5. Numerical Examples. To illustrate the previously described control laws, we consider in this
section several numerical examples which demonstrate the attenuation of shell vibrations using surface-
mounted piezoceramic actuators. The first example employs the feedback law described in Section 4.1 and
demonstrates the capability of the PDE-based controller for attenuating transient vibrations. The second
and third examples demonstrate the capability of the period feedback law developed in Section 4.2. The
shell is driven by a single frequency source in Example 3 while the attenuation in the case of a multiple
frequency input is demonstrated in Example 4.

For all three examples, the exogenous disturbance was constructed to model a periodic noise source
localized near the shell center at θ = 0 and θ = π. To accomplish this, the surface forces were taken to be

q̂x(t, x, θ) =
1

100
qx(t)e−20(x−x̄)2Θ(θ)

q̂θ = 0

q̂n(t, x, θ) = qn(t)e−20(x−x̄)2Θ(θ)

(5.1)
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where

Θ(θ) =

{
1− e−(θ−π/2)6/2 , 0 ≤ θ < π

1− e−(θ−3π/2)6/2 , π ≤ θ < 2π .

Here x̄ = `/2 denotes the axial center and qx(t) and qn(t) designate the periodic temporal components to be
specified in the examples. The spatial components of the force distributions are illustrated in Figure 2. The
normal force in the x and θ components can be interpreted as modeling periodic pressure sources adjacent
to the points (x, θ) = (x̄, 0) and (x, θ) = (x̄, π).

Twelve pairs of piezoceramic patches were employed as actuators (hence s = 12 in (2.1) and (2.7)) with
two sizes considered; the large patches had dimensions of x = 0.2, θ = π/3 while the smaller patches had
sizes of x = 0.1, θ = π/6. As indicated in Figure 3, the patch pairs were configured in sets of three along
the lines θ = 0, π/2, π, 3π/2. We reiterate that the voltages to the inner and outer patches in each pair
were independent so as to provide capabilities for generating both inplane forces and bending moments. The
dimensions and material properties of the shell and patches are summarized in Table 1.

To resolve the uncontrolled and controlled shell dynamics, the Fourier index m was taken from -4
to 4 for a total of 9 Fourier coefficients. The axial components of the longitudinal and circumferential
displacements were approximated using 13 modified cubic splines while 11 splines were employed in the
transverse displacement (two degrees of freedom are lost to accommodate the additional zero-slope boundary
conditions indicated in (2.6)). This yielded Nu = Nv = 117,Nw = 99 in (3.4) and a total of N = 666
coefficients in the ODE system (3.5).

The important issues of patch number, placement and size fall outside the scope of this work and are
under current investigation. The number of patches was fixed in these examples to facilitate comparison and
demonstrate the capabilities of the control method under uniform conditions.
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Figure 2. Spatial distribution of transverse and longitudinal forces (5.1) to the shell.
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θ = π6

L2

p
1

1L

6

1 2 3

4 5

10 11 12

Figure 3. Configuration of large patch pairs 1-6 and 10-12. Pairs 7-9 are centered along θ = π. Observation
lines L1 = {(x, θ)|0 ≤ x ≤ `, θ = π/6}, L2 = {(x, θ)|x = 3`/4, 0 ≤ θ ≤ 2π} and observation point
p1 = (x̂, θ̂) = (3`/4, π/32). Configuration of small patches is similar.

Dimensions Parameters

h = .00127m ρ = 2700 kg/m3

R = .4m E = 7.1× 1010N/m2

Shell ` = 1m cD = 1.47× 105Nms

ν = .33
µ = 58.97Ns/m2

hpe = .0001778m ρpe = 7600 kg/m3

Epe = 6.3× 1010N/m2

Patches Centers (x, θ): (.25, 0), (.5, 0), (.75, 0) cDpe = 1.7× 105Nms

(.25, π/2), (.5, π/2), (.75, π/2) νpe = .31
(.25, π), (.5, π), (.75, π) d31 = 190× 10−12m/V

(.25, 3π/2), (.5, 3π/2), (.75, 3π/2)
Dimensions – Large Patch: x : 0.2 cm, θ : π/3

Small Patch: x : 0.1 cm, θ : π/6

Table 1. Dimensions and physical parameters for the shell and patches.

Example 2.

We illustrate here the feedback law developed in Section 4.1 with no exogenous force. The shell was
initially driven for t = .01 seconds by the forces (5.1) with

qx(t) = qn(t) =

{
1000πt , 0 ≤ t < .01

0 , .01 < t ≤ .05

at which point the forces were terminated and the shell was allowed to freely vibrate. The open loop response
at the point p1 as well as the rms displacement values along the lines L1 and L2 are plotted in Figures 4 - 6
(see Figure 3 for the specific locations of p1, L1 and L2). The rms plots illustrate standing waves in all three
components of the displacement.
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Figure 4. Uncontrolled and controlled shell displacements at the point p1 with control initiated at t = .01
using small patches as specified in Table 1; (a) longitudinal uN(t, x̂, θ̂), (b) circumferential vN (t, x̂, θ̂), (c)
transverse wN (t, x̂, θ̂); (uncontrolled), (controlled).

Under approximation, the feedback law from Section 4.1 has the form

u(t) = −R−1(BN )T ΠNzN (t)

where ΠN and zN (t) respectively solve

(AN )T ΠN + ΠNAN + ΠNBNR−1(BN )T ΠN +QN = 0(5.2)

and

żN (t) =
[
AN −BNR−1(BN )T ΠN

]
zN(t)

zN (t0) = z0
(5.3)

(see (3.5) for the component matrices AN and BN ). For this example, we neglect the passive patch contri-
butions and construct the system matrices using constant parameters ρ,E, ν, cD. As indicated in Example 1,
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Figure 5. Uncontrolled and controlled shell displacements at the point p1 with control initiated at t = .01
using large patches as specified in Table 1; (a) longitudinal uN (t, x̂, θ̂), (b) circumferential vN (t, x̂, θ̂), (c)
transverse wN (t, x̂, θ̂); (uncontrolled), (controlled).

the convergence and exponential closed loop stability of control gains for this case are provided by Theorem 4.
The passive patch contributions are then included in the final two examples.

The state and control weights were taken to be

QN =

[
D(di)

D(d̂i)

][
KN

E

MN

]
, i = 1, 2, 3

R = D(ri) , i = 1, · · · , 24

where MN and KN
E denote the mass and stiffness matrices and D(di),D(d̂i),D(ri) are diagonal matrices

whose ith component is di, d̂i, ri, respectively. The simulations reported here were computed with the values
di = d̂i = 1013 and ri = 50. Large values of di, d̂i are not uncommon for such systems (e.g., see [2]) and
simulations have been run with values as large as di = d̂i = 1020 without experiencing degradation due to
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conditioning. Finally, the choice of a weighted mass matrix for the design matrix QN is motivated by energy
considerations as detailed in [3].

The closed loop dynamics of the shell were computed by numerically integrating the ODE system (5.3)
over the time interval [.01, .05]. The time history of the component displacements at the point p1 for the
smaller (.1, π/6) patches are plotted in Figure 4. Corresponding time trajectories with larger (.2, π/3) patches
are plotted in Figure 5 with corresponding rms values along the lines L1 and L2 plotted in Figure 6. The
time histories illustrate that while substantial control is obtained with the smaller patches, the attenuation is
enhanced significantly through the use of larger patches. In this latter case, the vibrations in all components
are completely attenuated by time T = .015 seconds. The rms plots demonstrate that strong attenuation is
attained across the shell including regions not covered by patches. This illustrates both the capabilities of the
patches as well as the issues associated with patch size. The larger patches will be employed throughout the
remaining examples. Questions regarding patch size, placement and number are under current investigation.
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Figure 6. Root mean square (rms) displacements with control using large patches; (a) axial line L1 and (b)
circumferential line L2; (uncontrolled), (controlled).

Example 3.

The remaining examples illustrate the feedback law of Section 4.2 which accommodates a periodic
exogenous disturbance g. For this example, a single frequency 500 Hz temporal input

qx(t) = qn(t) = 100 sin(1000πt)

was employed in the exogenous forces (5.1).
The approximate control law for this case was computed in the following manner. The adjoint solution

rN (t) was computed by numerically integrating the system

ṙN (t) = −
[
AN −BNR−1(BN )T ΠN

]T
rN (t) + ΠNgN(t)

rN (τ) = 0
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from the future time τ back to the present (the Riccati solution satisfies (5.2)). The optimal control and
closed loop solution were then obtained via

u(t) = −R−1(BN )T
[
ΠNzN(t)− rN (t)

]
(5.4)

and

żN (t) =
[
AN −BNR−1(BN )T ΠN

]
zN(t)−BNR−1(BN )T rN (t) + gN(t)

zN (0) = 0 .

To illustrate the effects of passive (material) patch contributions, we consider two cases. In the first,
passive contributions are neglected, as in Example 2, and system matrices are constructed using constant
parameters ρ,E, ν, cD. In the second case, all passive contributions are retained in the resultants (2.2), (2.3)
and density expressions, and hence are included in the system matrices AN and vectors BN , gN through the
inverted mass matrix.

The uncontrolled and controlled dynamics at the point p1 for the first case are plotted in Figure 7 while
corresponding plots for the system which includes passive properties are given in Figure 8. In both cases,
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Figure 7. Uncontrolled and controlled displacements at the point p1 without passive patch compo-
nents included in system matrices; (a) longitudinal uN(t, x̂, θ̂), (b) circumferential vN (t, x̂, θ̂), (c) transverse
wN (t, x̂, θ̂); (uncontrolled), (controlled).
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the time intervals are restricted to [0, .05] to illustrate the system dynamics. A comparison indicates that
the inclusion of passive or material properties has a significant effect on both open and closed loop dynamics
due to the additional density, stiffness and damping provided by the patches. Hence for many systems,
it is necessary to incorporate these components to attain an accurate model and a feasible model-based
control method (see [10, 14] for experimental evidence demonstrating the necessity of including passive
patch components). From a control perspective, it is noted that for this patch configuration, transverse
vibrations are reduced significantly throughout the shell with attenuation levels of approximately 80% at
the point p1. Similar attenuation is noted in the longitudinal and circumferential components. The spatial
nature of the uncontrolled and controlled shell in this regime is indicated by the rms values along the axial
line L1 and circumferential line L2 as plotted in Figure 9. These plots illustrate that in spite of the persistent
exogenous force, significant attenuation is attained in all components of the displacement.
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Figure 8. Uncontrolled and controlled shell displacements at the point p1 with passive patch compo-
nents included in system matrices; (a) longitudinal uN(t, x̂, θ̂), (b) circumferential vN (t, x̂, θ̂), (c) transverse
wN (t, x̂, θ̂); (uncontrolled), (controlled).
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Figure 9. Root mean square (rms) displacements with passive patch components included in system; (a)
axial line L1 and (b) circumferential line L2; (uncontrolled), (controlled).

Example 4.

This final example demonstrates that the performance of the controller is not degraded by a larger number
of frequencies in the exogenous disturbance and hence structural response. In this case, we employed

qx(t) = qn(t) = 50 [sin(320πt) + sin(440πt) + sin(600πt) + sin(660πt) + sin(820πt)]

so that the exogenous disturbance has five frequencies ranging from 160 Hz to 410 Hz.
The closed loop solution computed using the feedback law (5.4), with the five frequencies included, is

compared with the uncontrolled solution in Figure 10 and 11. The applicability of this law on the time
interval [0, .05], which is one half the fundamental period of the 330 and 410 Hz force components, is due to
the trigonometric nature of these components. The temporal trajectories at the point p1 reflect the multiple
frequencies in the exogenous disturbance and illustrate that the feedback law (5.4) is highly effective for such
broadband responses. This observation is reinforced by the rms plots in Figure 11 which indicate significant
reductions along the lines L1 and L2.

The voltages given by (5.4) for patch pairs 1-6 are plotted in Figure 12 (the outputs from the remaining
patch pairs are identical due to symmetry). Due to the axial symmetry of the transverse force q̂n, the voltages
to patch pairs 1 and 3, 4 and 6 are nearly identical. It is also noted that the voltages to the central patch
pairs 2 and 5 are larger than those to surrounding pairs to accommodate the larger axial force distribution
delivered to the shell center. The predominance of the circumferential force near θ = 0, π leads to larger
voltages to patch pairs 1-3 than 4-6. A comparison of the voltages to the inner and outer patches in each
pair first illustrates that the voltages are nearly diametrically out-of-phase which leads to the generation
of significant bending moments (see (2.5)). As indicated in Figure 13, the voltages also exhibit magnitude
differences and hence also generate inplane forces in addition to the bending moments. The small magnitude
of the inplane voltages, as compared with the total voltages plotted in Figure 12, illustrates the degree to
which bending motion dominates inplane motion for this force configuration. Finally, it should be noted
that the voltages to the patches are less than 80 V rms which is physically reasonable for patches having
the specified thickness. The combination of these effects provides the controller with significant vibration
attenuation capabilities for shell systems excited by general inputs.
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Figure 10. Uncontrolled and controlled shell displacements at the point p1; (a) longitudinal uN (t, x̂, θ̂), (b)
circumferential vN (t, x̂, θ̂), (c) transverse wN (t, x̂, θ̂); (uncontrolled), (controlled).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4
x 10

−7

A
x
ia

l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6
x 10

−6

C
ir
c
u

m
fe

re
n

ti
a

l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
x 10

−5

T
ra

n
s
v
e

rs
e

0 1 2 3 4 5 6
0

0.5

1
x 10

−6

A
x
ia

l

0 1 2 3 4 5 6
0

0.5

1
x 10

−6

C
ir
c
u

m
fe

re
n

ti
a

l

0 1 2 3 4 5 6
0

0.5

1

1.5
x 10

−5

T
ra

n
s
v
e

rs
e

(a) (b)
Figure 11. Root mean square (rms) displacements; (a) axial line L1 and (b) circumferential line L2;
(uncontrolled), (controlled).
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Figure 12. Voltages to the inner and outer patches of pairs 1-6 as depicted in Figure 3. (a) Pair 1, (b) Pair
2, (c) Pair 3, (d) Pair 4, (e) Pair 5, (f) Pair 6; —— outer patch, - - - - inner patch.
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Figure 13. Sum of inplane voltages to patch pair 1.

6. Conclusions. This work summarizes issues concerning the formulation and numerical implemen-
tation of a PDE-based LQR control method for thin cylindrical shells with surface-mounted piezoceramic
actuators. From a physical perspective, such actuators are popular since they are lightweight, relatively
inexpensive and provide broadband control inputs. When mounted in pairs on a cylindrical shell, they can
be used to generate both inplane forces and bending moments which provides the capability for controlling
the coupled longitudinal, circumferential and transverse vibrations of the structure.

Controller design for thin cylindrical shells is significantly more difficult than for plates or beams due
to the complexity of the structures and the inherent coupling of component displacements due to curvature.
The models, numerical methods and control laws must incorporate this coupling to be fully effective in
applications involving shell-like structures.

In this work, Donnell-Mushtari equations modified to incorporate passive and active patch contributions
were used to characterize the shell dynamics. This model incorporates the primary coupling mechanisms
while remaining sufficiently simple to permit initial analysis of the control methods. As detailed in [10, 15,
21, 26], the model can be directly extended to attain higher accuracy if the application warrants.

A Galerkin method utilizing bases constructed from tensored Fourier polynomials and modified cubic
splines was used to approximate the system dynamics. As discussed in [1, 20], an important issue when
approximating shell dynamics concerns the development of methods which avoid shear or membrane locking.
One manifestation of locking is the existence of model dynamics which are incorrectly approximated by
the numerical method. The use of a numerical method which exhibits locking can lead to a loss of control
authority and potential controller destabilization if the approximations are sufficiently inaccurate. As detailed
in [12], the Galerkin method employed here avoids locking and provides highly accurate approximate solutions
with moderate discretization levels.

The LQR control method discussed here accommodates the unbounded input operators due to the
discrete nature of the patches. A well-posedness and convergence framework is obtained through the abstract
formulation of the control problem in terms of sesquilinear forms and associated linear operators. Because
the LQR method requires full state knowledge for computation of control voltages to the patches, it cannot
be directly implemented in experiments. It does, however, provide a means for quantifying optimal patch
capabilities and performance and a setting in which to investigate questions concerning patch placement,
number, et cetera. It also provides the system and input matrices necessary for later construction of a state
estimator and compensator which can be experimentally implemented [10].
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The numerical examples demonstrate the performance of the method for a variety of exogenous dis-
turbances. Specifically, they illustrate that through the incorporation of coupling mechanisms in the PDE
model and hence controller, optimal patch voltages are determined which significantly attenuate all three
components of the shell displacement. Furthermore, by modeling the global shell dynamics and patch inter-
actions through coupled PDE and constructing the control laws in terms of these PDE, significant reductions
in both transient and periodic displacements are obtained throughout the shell, including regions which are
devoid of patches. This illustrates the optimal attenuation possible for the given patch configuration and
operating conditions.

An important issue which lies beyond the scope of this paper concerns the optimal number, size and
placement of patches for a given set of operating conditions. These issues transcend the specified control
method described here and must be addressed when designing any piezoceramic-based control method for
the system. The advantage of the PDE-based method for addressing these problems lies in the incorporation
of basic physical principles in the models and the utilization of these principles in the control laws.
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